
HOW RIGID MOTIONS CAN 
CHANGE A GEOMETRY COURSE 

James King, UW Math Dept

Pick up patty paper and a pencil as you come in,



WHY RIGID MOTIONS NOW?

• Rigid Motions are at the foundation of the 
Common Core approach to geometry at the 
secondary level.   
• An important feature to emphasize is that in the 

CC model Rigid Motions appear at very early in 
the geometry course, not as an advanced topic at 
the end.



WHAT ARE RIGID MOTIONS? – PART 1 

• (1) Rigid Motions of the plane are transformations 
of the plane.

• This implies that a rigid motion T is has an inverse T-1, with 
T T-1= T-1T= I, the identity map.

• Note:  Transformations have been key parts of geometry 
since the 19th century.  In 1923 an important committee of 
US mathematicians and teachers tried hard to get more 
transformations into classrooms.  So, this is an old story.



WHAT ARE RIGID MOTIONS? – PART 2 

• We assume that the plane is provided with a measure 
0≤|AB| of distance between any points A and B so that 
with this measure lines look like the real number line.
• (2) Rigid Motions preserve distance.
• If T is a rigid motion, then always |T(A)T(B)| = |AB|.
• Note:  A distance-preserving transformation is called 

an isometry.  



WHAT ARE RIGID MOTIONS? – PART 3 

• We assume the plane is provided with an angle measure 0 ≤ 
∡ABC ≤ 180 for points B and C distinct from A -- with the 
usual properties.

• Rigid Motions preserve angle measure.
• If T is a rigid motion, then always ∡T(A)T(B)T(C)  = ∡ABC.
• IMPORTANT:  This means that rigid motions map lines to 

lines, since three distinct points A, B, C are collinear if and only if 
∡ABC = 0 or 180.  



LAB: INFORMALLY MODEL RIGID 
MOTIONS

Take a piece of paper (really or mentally) and think about 
movements such as rotating the paper or sliding it without turning
• DOING NOTHING: The Identity mapping is a rigid motion.
• DOING AND UNDOING:  The inverse of a rigid motion is a 

rigid motion.
• DOING ONE ACTION FOLLOWED BY A SECOND:  The 

composition of two rigid motions is a rigid motion.
The formal statements can all be proved simply using functional 
notation.  



WHAT CAN RIGID MOTIONS DO?

1. Provide a correct and general definition of 
congruence.

2. Provide a tool to make some proofs simpler, more 
visual, and more comprehensible.

3. Prove triangle congruence criteria such as SAS 
instead of assuming SAS as an axiom.

4. Provide tools to prove theorems difficult to prove by 
other means.



CONGRUENCE!

• Commonly textbooks define congruence of two figures by 
saying that corresponding distances and angle measures are the 
same.

• This works well for triangles and other simple figures, but it has 
problems in general.

• For example, how does this definition test congruence of two 
circles?  Or lines?  Or two ellipses?  What distances? What 
angles? What correspondence? Some examples next:



CORRESPONDING SIDES EQUAL LENGTH;
ALL VERTEX ANGLES 90 DEGREES



CONGRUENCE OF FIGURES THAT ARE 
NOT POLYGONS

• Is the red circle congruent 
to the blue one?

• Is the red arc congruent 
to the blue one?  

• Are any two lines 
congruent?



DEFINING CONGRUENCE BY 
SUPERIMPOSITION RIGOROUSLY

• Definition:  Two figures are congruent if there is a rigid motion that 
maps one figure onto the other one.

• Informally, two figures are congruent if you can lay one precisely onto the 
other, in other words, to superimpose one on the other.

• Euclid and the other Greek geometers of antiquity had this intuitive idea too 
but had no math language for expressing it.

• We do have a language in modern math; we have the language of functions.



ADVANTAGES OF THIS DEFINITION

• Can consider congruence of any pair of figures in the 
plane.

• It is a very general concept.  The definition extends to 
other geometries, such 3-space or space-time) or spherical 
geometry.

• It makes sense in engineering and science. For instance, 
one can ask whether two virus particles are congruent.



SOME PATTY PAPER EXPERIMENTS

• I suggest that you try to follow the next few slides 
with patty paper and pencil.



RIGID MOTION WITH ONE FIXED 
POINT

• To investigate behavior of rigid motions, start with a 
rigid motion T that fixes a point A, i.e., T(A) = A.

• For any other point C what are the possible images 
of C?

• Let’s experiment with our sheet of patty paper.  
Mark a point A and a point C.  Hold A fixed by 
pinning it with your pencil point.  Move the paper as 
much as you can.  Where can C go?

A
C



RIGID MOTION WITH ONE FIXED 
POINT

• The image T(C) must be on the circle with center A 
that passes through C.

• This is true because T is an isometry.  We do not 
need angle measure for this, A

C



RIGID MOTION WITH TWO FIXED 
POINTS

• Now suppose a rigid motion T fixes two points A 
and B, i.e., T(A) = A and T(B) = B.

• For any point C what are the possible images of C?

• Again, experiment with your sheet of patty paper.  If 
you pin both A and B, you will have trouble moving 
your paper.  So, try flipping or FOLDING the paper 
with the fold through A and B.   Mark the point that 
matches up with C.

B

A C



RIGID MOTION WITH TWO FIXED 
POINTS

• Things to notice when we fold.

• (1) The fold is straight, it’s along a line.  
What is the image of C when C is on the 
line AB?

• (2) If C is not on this line, there is only 
one place that D that can be T(C) 
(besides C itself).  To see why, draw equal 
segments AC and AD with ∡CAB = 
DAB.

D

B

A C



RIGID MOTION WITH TWO FIXED 
POINTS

• Assume T(C) ≠ C.  If we connect points with 
line segments, we see relationships because T is 
a rigid motion.

• (a) D is the only possible value for T(C) 
because ∡CAB = ∡DAB and  |DA| = |DC|.

• (b) T(M) = M since M is on the line AB.

• (c) All the pairs of marked angles and segments 
are congruent!

• (d) line AB is the perpendicular bisector of CD.

M

D

B

A C



LINE REFLECTION

Let m be a line AB.  Suppose a transformation T 
fixes the points of m and for any other point C, 
the line m is the perpendicular bisector of 
CT(C).
Then T is called line reflection in m, denoted 
Rm.
We have seen that a rigid motion that fixes the 
point of m is in fact line reflection in m.
Conversely, we do NOT know that for every m, 
there is line reflection that is a rigid motion 
unless there is some axiom that tells us so.



LINE REFLECTION EXISTENCE

Our goal is that for every line m there is a rigid 
motion that is reflection in m.
Either
• Assume as an axiom that for every line, there is 

a rigid motion distinct from the identity that 
fixes the points of m.  (One can prove that this is 
line reflection as we have done or also add that 
to the axiom.)

• Assume a different axiom such as Side-Angle-
Side for triangles and construct line reflection.  
The either assume that line reflection is a rigid 
motion or prove it (a complicated proof for 
beginners).



ISOSCELES TRIANGLES

• Demonstrating the basic properties on an isosceles 
triangle is not very difficult by any approach, but what we 
have already done offers a quick and direct way to show all 
the properties at once and in a visual way.



LINE REFLECTION AND ISOSCELES 
TRIANGLES

• We start with the sides: |AB| = |AC|.  
Using angle measure, there is a line n 
that bisects angle BAC.  Let R be 
reflection in this line.

• Since R is a rigid motion, we can see 
R(B) = C as before in such a figure. 

• Note special case when points are 
collinear.

n

A

B

C D



REFLECTIONS & ISOSCELES TRIANGLE 
RELATIONSHIPS

• From this we conclude many things about 
the isosceles triangle ABC.

1. The bisecting line n of angle BAC is the 
perpendicular bisector of BC.

2. Therefore, for any point P with |PB|=|PC|, 
then P is on n.

3. The base angles ABC and ACB of the 
triangle are congruent,

4. One can see and feel these relations by 
folding the figure along n.

M

C

A B



BASIC CONGRUENCE THEOREMS

• We will prove some basic congruence theorems leading up to congruence of 
triangles.  You will follow along  by folding your patty paper.

• Case 0:  Any two points A and B are congruent

• Yes, we need to prove this using the definition! Let m be the perpendicular 
bisector of segment AB, then reflection in m maps A to B, so the points are 
congruent.

• Now you can tell your friends that in this session we proved that any two 
points are congruent!



CONGRUENCE OF SEGMENTS

• Suppose AB and CD are 
segments in the plane of 
equal length. 

•  Can we find a rigid 
motion that takes AB to 
CD?

• Follow along on a sheet 
of patty paper if you like.

B

A

C

D



MOVING THINGS: SEGMENTS

• If A = C,  triangle ABD is 
isosceles. Go directly to step 2.

• Step 1.  Assuming A≠C, reflect 
AB in the perpendicular bisector 
of AC.  (A is congruent to C!)

• The image of AB is now CB’, with 
|B’C| = |DC|.  If B’ = D, we are 
done; stop here. 

B'
B

A

C

D



MOVING THINGS: SEGMENTS

• Step 2. In this case, triangle CDB is 
isosceles.  We reflect segment CB’ in the 
perpendicular bisector of B’D.  B’ reflects 
to D and C reflects to C.

• Thus, there is a rigid motion that is either 
one line reflection or the product of two 
reflections that maps AB to CD.  

• Note:  We just proved that AB is 
congruent to CD and that any two 
segments of the same length are 
congruent!

B'
B
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C
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SAS TRIANGLE CONGRUENCE

The Side-Angle-Side (SAS): 

Let ABC and DEF be triangles with 
|AB|= |DE| and |AC|=|DF| and 
∡BAC= ∡EDF.  Then the triangles are 
congruent.

Let’s see how to prove this using 
products of line reflections. Start with 
a rigid motion T that maps AB to DE. 

F
B

A
D

C
E



MOVING TRIANGLES USING SAS

• T maps AB to DE, with C’ = T(C). Let R 
be reflection in line DE. 

•  Since T is rigid, |C’D|= |CA|= |FD| and 
∡EDF=∡BAC=∡EDC’, so the point C’ is 
either F or F’ = R(F).

• If C’=F,  T defines a congruence from 
ABC to DEF; If C’=F’, RT does the job.

• So, a product of either1, 2, or 3 
reflections defines a congruence.

F

F'

B
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REFLECTIONS ARE OK, BUT WHAT ABOUT 
THE REST OF THE RIGID MOTIONS?

• The rest of the rigid motions are already here.  All of 
them are products of line reflections.

• ROTATIONS are compositions of reflections in two 
intersecting lines.  The center is the point of intersection.   
The angle of rotation is double the angle between the 
lines of reflection.  Look at our segment example..  

• TRANSLATIONS:  The product of two reflections in 
parallel lines is a translation in the Euclidean plane.

• Rotations are fun to explore with geometry software.

B'
B

A

C

D



EXAMPLE: HALF-TURN

• The product of reflections in two 
lines is a rotation with center at the 
point of intersection and rotation 
angle twice the angle between the 
lines.

• For example, if the lines are 
perpendicular, the rotation angle is 
180 degrees and the rotation is 
called a half-turn or point symmetry.



EXAMPLE: REGULAR POLYGONS

• Regular n-gons have n line 
reflections that each map the 
polygons onto itself (i.e., line 
symmetries).  

• The product of any two of these 
line reflections is a rotation that 
maps the polygon to itself.



SYMMETRY REASONING: HALF-TURNS

• Two parallel lines and a transversal form a figure with a half-turn symmetry.  
This rigid motion pairs congruent angles and lengths.

• Also, parallelograms have half-turn symmetry.  The center of the rotation s the 
intersection of the two diagonals.



HOW TO INTRODUCE RIGID MOTIONS 
INTO A GEOMETRY COURSE

• Here are 3 possible approaches.  From the more formal to the more informal.

1. Replace the SAS axiom in your current approach with an axiom that says that 
for every line, there is a rigid motion distinct from the identity that fixes the 
points of the line.  As soon as possible, prove SAS with this new set of axioms.  
Once this is proved, you will have everything as usual PLUS rigid motions.

2. Instead of replacing the SAS axiom, just assume the existence of a line 
reflection for each line as an additional axiom.  Now you will have more 
axioms than you need, but you can reason with them all the same.

3. Although all the other rigid motions are reflection products, just assume they 
all exist from the start.



A FINE POINT: RIGID MOTIONS VS. 
ISOMETRIES

• Many books introduce the concept of an isometry.  This is a transformation 
that preserves distance.  Nothing is said about angles.

• But – this is tricky – during the development of your geometry course, you can 
prove that every isometry is a rigid motion.  The key is the SSS triangle 
congruence criterion, which can be proved by rigid motions. This connects 
length preservation with angle preservation.

• The tricky part is the order.  If you just assume isometry at the outset, you 
must assume SAS and do a tough proof to show that line reflection is a rigid 
motion, so this tends to happen later in the course than is optimal.



TRANSFORMATIONS FOR SIMILARITY 
AND EUCLIDEAN PARALLEL POSTULATE

• The existence of similar figures in the plane at different scale is 
equivalent to the Euclidean Parallel Postulate.  

• One version of EPP is a statement about uniqueness of parallel lines.

• A different option is to introduce this property by a DILATION 
AXIOM that defines dilation and then says every dilation preserves 
angles and scales distance.  

• From this one can prove the Euclidean parallel property and everything 
about similarity and similarity transformations.

• There is a talk about this on my website.  



RESOURCES FOR LESSONS

• Any treatment of isometries or symmetry in a geometry book, the 
Math Teacher,  or online source.

• H. H. Wu’s homepage at UC Berkeley Math Department.  Wu was 
really a motivator for Common Core geometry.  This page has links to 
two of his books that offer examples for teaching with rigid motions.

• Online sources for the Common Core, or new textbooks such as the 
ones from Illustrative Mathematics. 

• The library of geometry explorations for Geogebra.

• Maybe some ideas from my book, Geometry Transformed.



ADVICE: RELAX, MAKE SMALL CHANGES

• When talking about Rigid Motions as a kind of revolutionary idea, let’s 
remember that in the end we are talking about the same Euclidean Plane as 
before, with a few extra tools. The same stuff is true.  Once you get through 
the introduction, all the same proofs will still work.

• There is NO reason to include transformations in every proof,  The best style 
is to use the right tool for each job,  You can use several approaches and 
discuss the differences with your students.

• Don’t be overambitious in making changes.  It is better to make some modest 
changes and see how they work out, especially if you are happy with how you 
already are teaching geometry..



EYES ON THE PRIZE

• The goal is for your students to have a rich understanding of 
geometrical relationships and how to reason about them.

• There are many paths to get there.



RIGID MOTIONS AND COORDINATES

• If you have coordinates in your plane, some 
transformations have simple formulas:  

• R1(x, y) = (x,-y) is reflection in the x-axis and R2(x,y) 
= (y,x) is reflection in the line x = y. 

• The product R2R1(x,y) = R2(x—y) = (-y, x) is the 
formula for rotation by 90 degrees with center (0,0)


